برآورد پارامترها در مدل های رگرسیون سری زمانی تکراری

thesis
abstract

چکیده یکی از متداول ترین مدل های آماری مطالعه شده مدل رگرسیون خطی است که خطاهایش به طور دنباله وار وابسته و از یک الگو سری زمانی پیروی می کند. در این پایان نامه کاربرد روش شبه کمترین مربعات ( ) را که به عنوان یک روش جدید برای برآورد پارامترها در مدل رگرسیون سری زمانی با خطای با ساختار مدل اتورگرسیواز مرتبه مورد بررسی و مطالعه قرار می گیرد. این روش شبه کمترین مربعات توسط چاگانتی (1997) برای تحلیل داده های طولی معرفی شد. استفاده از این روش نیازمند هیچگونه فرضی درباره توزیع داده ها نیست. لذا از دیدگاه کاربردی از این جهت حایز اهمیت است که حتی اگر متغیر پاسخ نرمال نباشد می توان به عنوان یک روش بهینه مورد استفاده قرار گیرد. در ادامه روشهای دیگری نظیر برآوردگرهای گشتاوری ( ) و ماکسیمم درستنمائی ( ) معرفی می شود. سپس با استفاده از روشهای شبیه سازی به مقایسه این روشها پرداخته و نقاط ضعف و قوت آنها را بیان می کنیم. که در این پایانه نامه شبیه سازی را با استفاده از نرم افزار sas/iml انجام داده و نتایج شبیه سازی نشان می دهد که روش برآورد بهتر از روش برآورد گشتاوری بوده و می تواند به عنوان یک رقیب مناسب در مقابل روش برآوردهای ماکسیمم درستنمائی در نظر گرفته شود .

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

مقایسه عملکرد رگرسیون های چندخطی، رگرسیون ناپارامتری و مدل های سری زمانی در برآورد و پیش بینی مقادیر تبخیر

برای شبیه سازی سری های زمانی، روش هیا مختلفی ارائه شده اند که از آن جمله می توان مدل های سری زمانی ar، arma و armax و روش های رگرسیون چندخطی (mlr) و رگرسیون ناپارامتری (k-nn) را برشمرد. در این تحقیق، عملکرد این روش ها در برآورد داده های مفقود و پیش بینی مقادیر آتی سری زمانی تبخیر از سطح آزاد آب مورد بررسی قرار گرفت. مدل armax با استفاده از ورودی های استاندارد شده دمای کمینه و بیشینه، متوسط دما،...

full text

مقایسة عملکرد رگرسیون های چندخطی، رگرسیون ناپارامتری و مدل‌های سری زمانی در برآورد و پیش بینی مقادیر تبخیر

برای شبیه‌سازی سری‌های زمانی، روش‌هیا مختلفی ارائه شده‌اند که از آن جمله می‌توان مدل‌های سری زمانی AR، ARMA و ARMAX و روش‌های رگرسیون چندخطی (MLR) و رگرسیون ناپارامتری (K-NN) را برشمرد. در این تحقیق، عملکرد این روش‌ها در برآورد داده‌های مفقود و پیش‌بینی مقادیر آتی سری زمانی تبخیر از سطح آزاد آب مورد بررسی قرار گرفت. مدل ARMAX با استفاده از ورودی‌های استاندارد شدة دمای کمینه و بیشینه، متوسط دما،...

full text

برآورد احتمال تغییر وضعیت رفتار سری های زمانی مالی با مدل اتورگرسیو تبدلی مارکف

در این مقاله، با استفاده از احتمال های تغییر وضعیت m-دوره بعد زنجیر مارکف، احتمال تغییر وضعیت رفتار نوسان های در این مقاله روشی برای برآورد احتمال تغییر وضعیت سری های زمانی مالی توسط مدل اتورگرسیو تبدلی مارکوف پیشنهاد شده است. سپس با استفاده از این مدل، رفتار نوسان های نرخ ارز به دو رژیم نرخ تغییرات کم و زیاد مدل بندی شده است. نتایج پیش بینی نشان می دهد که احتمال ماندگاری در رژیم ها رو به کاهش...

full text

برآورد نامنفی مولفه های وریانس در سری های زمانی مختصات GPS

برای برآورد مجهولات در یک مدل تابعی که در آن مشاهدات تابعی خطی از مجهولات می­باشند، استفاده از روش کمترین مربعات مرسوم است. بهترین برآورد خطی نااُریب (BLUE) وقتی حاصل می­شود که معکوس ماتریس کواریانس مشاهدات به عنوان ماتریس وزن در نظر گرفته شود. لذا داشتن برآوردی واقع گرایانه از دقت مشاهدات کاملا ضروری است. یکی از روش­های بدست آوردن دقت مشاهدات، استفاده از برآورد کمترین مربعات مولفه­های وریا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023